Stereo With Bridged Center Speaker

The art of stereophonic sound reproduction was described in great detail in the SYMPOSIUM ON AUDITORY PERSPECTIVE (AIEE-Electrical Engineering, January 1934; authors were The Bell Telephone Laboratories Technical Staff). Steinberg and Snow compared 3-channel stereo with 2-channels with a bridged center speaker in their part of the SYMPOSIUM.

My own paper of 1962 (IEEE Transactions on Audio) using a slightly different measuring technique, indicated that 2 channels with a bridged center speaker "2-3 Stereo" closely approached 3 channel stereo for accuracy of sound localization or "Stereo Geometry" (which I used as a title of the paper).

One amplifier maker, Marantz, feels there is "doubtful" benefit from the "derived" center channel, but proceeds to offer suggested circuits whereby 3 amplifiers may be used even though only 2 channels exist.

As an Engineer I like efficiency, and adhere to the principle that an engineer can do for $2 what anybody could do for $200. On this basis, our Company has suggested several means whereby 2 amplifiers suffice for the 2 channels and a post-amplification matrix supplies the center speaker, meeting all requirements of polarity, impedance match, retention of minimum distortion, and controlability. One amplifier manufacturer, McIntosh, agrees to the extent of publishing a circuit essentially like ours for use with 2 amplifiers (or a stereo pair).

Attention has been called to several "variations" of our suggested matrix circuits, one involving a common center speaker in series with the 2 flanking units. The amplifier maker who devised this circuit, Hafler of Dynaco, Inc. (High Fidelity, July 1965) thinks so much of it that -- it is said -- he is attempting to patent it. (Analysis shows this circuit to dilute each flanking circuit with about minus 6 db cross talk from the other flanking circuit. See Appendix).

Various popular writings have repeated some good techniques and introduced some questionable ones -- one revives the Electro-Voice matrix transformer to yield additive polarity. This necessarily increases distortion -- twice as much (or more) exciting current is drawn depending on quality of the added transformer (I tend to shudder at adding a transformer to the superb output system of a McIntosh). This was revived by Salm in Audiofan July 1965.
For the benefit of those who would like to derive the most from a 2-channel 3-speaker stereo system there is bibliography of papers on audio by your editor of the "Dope from Hope" plus a reprint of the great SYMPOSIUM (reprinted by permission). There is also a simple one sheet "The Dope From Hope", Vol. 2 No. 13 giving some tried and useful circuits. The reprint set is $3.50 -- the Dope from Hope is free.

This may sound like a sales pitch, which it is -- but the price barely covers cost and the material is offered for the benefit of those who can appreciate it.

Paul W. Klipsch

APPENDIX

Analysis of Series L+R Center Speaker (Dyna)

In the Fig. 1, consider each impedance is an 8 ohm loudspeaker, and that a signal \(E_L \) is supplied by the left amplifier and the right amplifier is supplying zero volts at low impedance. In effect \(R \) and \(L+R \) are 8 ohm loads in parallel which added to \(L \) makes 12 ohms. To simplify arithmetic assume \(E = 12 \) volts so one ampere flows in the left loudspeaker and \(\frac{1}{2} \) amp in each \(L \) and \(L+R \). Thus the right speaker is carrying half an ampere of \(L \) signal and is therefore delivering a minus 6 db level of the left signal.

The presence of the center loudspeaker in this configuration necessarily dilutes the stereo effect by feeding each flanking speaker with minus 6 db of the signal pertaining to the other channel. The "phase" purists may well shudder, as the polarity of the \(L \) signal in the \(R \) speaker is reversed as shown in the arrows.

Figs. 2 and 3 represent excellent matrix circuits for 2 channel stereo with bridged center speaker.

McIntosh except 225

KLIPSCH and ASSOCIATES, Inc. Hope, Arkansas